skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ward, Dale M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The profiles of marine boundary layer (MBL) cloud and drizzle microphysical properties are important for studying the cloud‐to‐rain conversion and growth processes in MBL clouds. However, it is challenging to simultaneously retrieve both cloud and drizzle microphysical properties within an MBL cloud layer using ground‐based observations. In this study, methods were developed to first decompose drizzle and cloud reflectivity in MBL clouds from Atmospheric Radiation Measurement cloud radar reflectivity measurements and then simultaneously retrieve cloud and drizzle microphysical properties during the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE‐ENA) campaign. These retrieved microphysical properties, such as cloud and drizzle particle size (rcandrm,d), their number concentration (NcandNd) and liquid water content (LWCcandLWCd), have been validated by aircraft in situ measurements during ACE‐ENA (~158 hr of aircraft data). The mean surface retrieved (in situ measured)rc,Nc, andLWCcare 10.9 μm (11.8 μm), 70 cm−3(60 cm−3), and 0.21 g m−3(0.22 g m−3), respectively. For drizzle microphysical properties, the retrieved (in situ measured)rd,Nd, andLWCdare 44.9 μm (45.1 μm), 0.07 cm−3(0.08 cm−3), and 0.052 g m−3(0.066 g m−3), respectively. Treating the aircraft in situ measurements as truth, the estimated median retrieval errors are ~15% forrc, ~35% forNc, ~30% forLWCcandrd, and ~50% forNdandLWCd. The findings from this study will provide insightful information for improving our understanding of warm rain processes, as well as for improving model simulations. More studies are required over other climatic regions. 
    more » « less